Effect of a poloxamer-based thermosensitive gel on rotator cuff repair in a rabbit model: a controlled laboratory study

Kim TI, Jung W, Chung JY, Jeong H, Kim SH
J Orthop Surg Res. 2019 Jun 25;14(1):190.

BACKGROUND: A common complication after rotator cuff repair is postoperative stiffness, which can be reduced by a simple application of an anti-adhesive agent. However, anti-adhesive agents may affect rotator cuff healing by preventing fibrosis. This experimental animal study evaluated the effect of the application of a poloxamer-based thermosensitive anti-adhesive gel and its influence on the healing of an acute rotator cuff repair in a rabbit model.

METHODS: Acute rotator cuff repair (supraspinatus tendon) was performed using a transosseous suturing method. One shoulder on a randomly selected side was treated with a local application of the anti-adhesive agent (applied side), and saline was applied to the contralateral side (control side). Biomechanical testing and histological analyses were performed at 4 and 8 weeks postoperatively. Eight rabbits were included for each testing and time point, for a total of 32 rabbits.

RESULTS: The failure load at 4 weeks was lower in the experimental group (95.2 ± 19.6 N vs. 110.0 ± 20.5 N; P = 0.017). Conversely, at 8 weeks, the failure load was higher in the experimental group (148.3 ± 16.2 N) than in the control group (122.4 ± 16.9 N; P = 0.002). Histological analyses revealed no statistically significant differences in the tendon maturing scores at 4 and 8 weeks between the two groups (all P > 0.05). The thickness of the fibrosis between the rotator cuff tendon and deltoid was thinner in the experimental group at both time points (0.50 ± 0.25 vs. 1.27 ± 0.47; P = 0.002 at 4 weeks, and 0.37 ± 0.35 vs. 1.39 ± 0.50; P = 0.003 at 8 weeks).

CONCLUSIONS: Application of an anti-adhesive agent in this rotator cuff model confirmed the agent's effectiveness at reducing fibrosis in the subacromial space. The healing of the tendon showed interesting results, as the experimental group had poorer biomechanical strength at 4 weeks but superior strength at 8 weeks.