Biomechanical comparison of four prosthetic ligament repair techniques for tarsal medial collateral ligament injury in dogs

Authors: 
Martin Y, Johnson MD, Travers CJ, Colee J, McConkey MJ, Banks SA.
Am J Vet Res. 2019 May;80(5):469-479.

OBJECTIVE: To compare joint stability and ultimate strength among 4 prosthetic ligament constructs for repair of tarsal medial collateral ligament (MCL) injury in dogs.

SAMPLE: 13 canine cadavers (26 hind limbs).

PROCEDURES: Each limb was stripped of all soft tissues except those associated with the tarsal joint and assigned to 1 of 4 prosthetic ligament constructs. The AN construct consisted of 3 bone anchors connected with monofilament nylon suture. The AU construct consisted of low-profile suture anchors connected with multifilament ultrahigh-molecular-weight polyethylene (UHMWPE) suture. The TN and TU constructs involved the creation of 3 bone tunnels and use of nylon or UHMWPE suture, respectively. Each limb underwent biomechanical testing before and after MCL transection and before and after cyclic range-of-motion testing following completion of the assigned construct. Tarsal joint stability (extent of laxity) was assessed with the joint in each of 3 positions (75°, 135°, and 165°). After completion of biomechanical testing, each limb was tested to failure to determine the ultimate strength of the construct.

RESULTS: Relative to intact tarsal joints, joint laxity was significantly increased following completion of all 4 constructs. Construct type was not associated with the magnitude of change in joint laxity. Ultimate strength was greatest for the UHMWPE-suture constructs.

CONCLUSIONS AND CLINICAL RELEVANCE: Results indicated that all 4 constructs effectively stabilized MCL-deficient tarsal joints. Implants used for the TU, TN, and AU constructs had a lower profile than those used for the AN construct, which may be clinically advantageous. In vivo studies are warranted.