Biomechanical comparison of locking compression plate and limited contact dynamic compression plate combined with an intramedullary rod in a canine femoral fracture-gap model

Journal
Matres-Lorenzo L, Diop A, Maurel N, Boucton MC, Bernard F, Bernardé A. Vet Surg. 2016 Apr; 45 (3): 319-26.

OBJECTIVE: To compare the biomechanical properties of locking compression plate (LCP) and a limited contact dynamic compression plate combined with an intramedullary rod (LC-DCP-R) in a cadaveric, canine, femoral fracture-gap model.

STUDY DESIGN: In vitro biomechanical study; nonrandomized, complete block (dog).

SAMPLE POPULATION: Paired cadaveric canine femora (n = 10 dogs).

METHODS: Paired femurs with a mid-diaphyseal 20 mm gap were stabilized with either LCP or LC-DCP-R. Nondestructive testing up to 60% of body weight (BW) was followed by a continuous destructive test. Comparative structural properties, 3-dimensional (3D) interfragmentary motion, and plate linear strain were evaluated. Paired comparisons were made between LCP and LC-DCP-R.

RESULTS: Stiffness after nondestructive testing was significantly lower for LCP with a mean (95% confidence interval [CI]) of 61 N/mm (46-76) versus 89 N/mm (67-110) for LC-DCP-R (P = .0072). Ultimate load to failure was significantly lower for LCP with a median (interquartile range [IQR]) of 270 N (247-286) versus 371.5 (353-385) for LC-DCP-R (P = .002). Axial motion at 60% BW was significantly higher for LCP with a median (IQR) of 1.01 mm (0.71-1.26) versus 0.36 mm (0.20-0.49) for LC-DCP-R (P = .002). Shear motion was significantly higher for LCP with a median (IQR) of 1.18 (0.78-1.58) versus 0.72 mm (0.45-1.00) for LC-DCP-R (P = .018). Strain was significantly higher for mid-LCP surface with a mean (95%CI) at 60% BW of 979 μdef (579-1378) versus 583 μdef (365-801) at mid-LC-DCP-R surface (P = .0153). The elastic limit strain of the plates was not different and was reached at a mean (95%CI) load of 241 N (190-292) for LCP versus 290 N (245-336) for LC-DCP-R (P = .12).

CONCLUSION: The LC-DCP-R showed higher stiffness and resistance to failure, lower interfragmentary motion, and lower plate strain and stress compared to LCP.